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Abstract

Machine vision systems (MVSs) are an important component of intelligent

systems, such as autonomous vehicles and robots. However, with the con-

tinuous increase in data and new application scenarios, new requirements

are put forward for the next generation of MVS. There is an urgent need to

find new material systems to complement the existing semiconductor tech-

nology based on thin-film materials, and new architectures must be

explored to improve efficiency. Because of their unique physical properties,

two-dimensional (2D) materials have received extensive attention for use in

MVSs, especially in biomimetic ones: the human visual system, which can

process complex visual information with low power consumption, provides

a model for next-generation MVSs. This review paper summarizes the pro-

gress and challenges of applying 2D material photodetectors in sense-mem-

ory-computational integration and biomimetic image sensors for machine

vision.
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1 | INTRODUCTION

Machine vision systems (MVSs) simulate human visual
functions to observe and recognize the objective world.1,2

They can be used for image acquisition, image processing,
and feature recognition.3 With the rapid development of
information integration, machine vision has become indis-
pensable in automated production, autonomous driving,
robotics, security, and other domains.2 New application
scenarios and increasing quantities of data have created a
demand for MVSs with faster parallel processing, higher
energy efficiency, smaller volume, and lower price.4

Image acquisition by an MVS depends on the image
sensor. At present, most commercial visible-image sen-
sors are either charge-coupled devices (CCDs) or CMOS
image sensors (CISs).3 Infrared photosensor materials
include cooled mercury-cadmium-telluride (MCT), InSb,
quantum wells, Type-II superlattice or uncooled VOx,
PbS, InGaAs, amorphous silicon, PbS, and PbSe.5

In recent years, two-dimensional (2D) materials (i.e.,
materials with atomically thin layers) have become a
powerful competitor.6–10 Their extreme thinness, quan-
tum electronic states, large carrier mobility, and localized
optical transition give them many advantages over
traditional materials.11 2D materials are a large family,
including metals, semi-metals, semiconductors, and insu-
lators.12 Because they are so thin, their band structure
can be adjusted through a localized electric field or exter-
nal stress; thus, their detection waveband can range from
ultraviolet to terahertz.13 Because different layers of 2D
materials are bonded by van der Waals forces, with no
dangling bonds, they can be easily integrated with each
other or memristor circuits, regardless of lattice mis-
match or deposition temperature.11,14

Combining 2D materials with silicon chips to form a
heterogeneous structure platform based on vdW forces can
greatly promote vertical integration and functional diversifi-
cation.15,16 However, an MVS based on von Neumann
architecture encounters difficulties when applied to new
scenarios with higher performance requirements. The
image acquisition, storage, and processing modules in tradi-
tional von Neumann structures are physically separated.17

Visual information is obtained through image sensors in
the MVS and stored in a storage module. To conduct fur-
ther image processing requires that a large amount of
image data be transferred repeatedly between the memory
and the processor, resulting in high energy consumption.18

In addition, the bandwidth of the storage module is much
smaller than that of the processing module: the so-called
“storage-wall problem”, which limits the speed of the entire
system.19 Therefore, when implementing parallel tasks such
as image processing, the von Neumann structure has low
efficiency, high energy consumption, and is slow.2,20

The human visual system (HVS) can recognize vari-
ous objects and perceive visual information in a complex
environment with high energy efficiency.21 Image infor-
mation is preprocessed near the retina before being sent
to the brain.22 Therefore, there is no need for an analog-
to-digital (AD) conversion process, which would require
high power consumption. HVS-inspired machine vision
preprocessing functions utilizing a 2D-material photode-
tector have therefore been proposed. To improve data
processing capacity, speed, and power consumption fur-
ther, neural networks can be combined with such novel
photodetectors. A 2D-material photodetector array can
be integrated with a memristor module, the resistance
value of which can then be used as the weight of the neu-
ral network. More importantly, because of the 2D mate-
rial's unique layered structure, the carrier density can be
precisely tuned by shifting the gate voltage, and even the
carrier type can be changed, altering the response range
or responsivity.23,24 The adjustable responsivity can
mimic the variable weights of a neural network, allowing
preprocessing to occur in the detection module and
thereby increasing speed and reducing energy consump-
tion. Detection, calculation, and storage functions can be
realized in one device simultaneously.9

This review summarizes a variety of attempts to apply
2D-material photodetectors to MVSs, including vertical
integration with silicon-based readout circuits and inte-
grated sensing, memory, and computing architecture. As
a new material system, 2D materials face many chal-
lenges in the transition from the laboratory to industry.
This paper considers not only the advantages and diversi-
fied functions of 2D materials but also the limitations of
existing MVSs. Some possible future applications are con-
sidered in detail. This review provides a basis for the
application of 2D material photodetectors in terms of
materials, performance, and systems. The main chal-
lenges to practical applications are highlighted, including
the preparation of large-area materials and the calibra-
tion of key performance indicators. We suggest a possible
solution to the latter problem, at least for the case of nor-
malized detectivity.

2 | VERTICALLY INTEGRATED
MVSs BASED ON 2D-MATERIAL
PHOTODETECTORS

2.1 | Vertical integration with silicon-
based von Neumann architecture

Silicon semiconductor technology, the foundation of the
modern electronics industry, has been developing vigor-
ously since the 1960s. The appearance of 2D materials
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makes possible future development of the microelectron-
ics industry at the atomic scale without considering lat-
tice mismatch. Benefitting from van der Waals forces
between layers, 2D materials can be stacked like LEGO
blocks at the atomic level without restrictions on lattice
matching. Therefore, 2D-material-based detectors can be
vertically integrated with Si-based chips at high densities
(Figure 1C). Already, a 5 � 5 MoS2-based detector array
has been heterogeneously integrated with a silicon chip26

(Figure 1D). In another study, a 388 � 288 detector array
using graphene and quantum dots was heterogeneously
integrated with a CMOS readout circuit with a detection
waveband of 2000 nm25 (Figure 1A). This was the first
time that high-density vertical interconnection between
an infrared detector and a silicon-based chip was real-
ized. Graphene was used as the channel of the photode-
tector, while PbS quantum dots were spin-coated on
graphene as the absorption layer. The working mecha-
nism of this device was photogating. The bottom silicon
chip, acting as the readout circuit, integrated and ampli-
fied the signal from the detector (Figure 1B). This type of
heterostructure fabricated by dry transfer27,28 is particu-
larly important in the development of infrared detection,
because it is not restricted by lattice matching between
materials.

As described by Liu et al.,11 vdW integration can be
further developed. The detector, memory, and logic

circuit can be vertically integrated to realize a system-
level vdW detection chip (Figure 1E). This technology
significantly reduces the MVS volume while increasing
the pixel density. However, it is still based on the von
Neumann structure and is subject to the storage wall and
other problems that have not yet been solved. Future
MVS systems need new architectures integrating detec-
tion, storage, and processing capabilities at the device
level.

2.2 | Limitations of von Neumann
architecture

In existing MVSs, light passes through a set of lenses
before converging onto photodetectors, which convert
optical signals into analog photocurrent signals. The
readout circuit integrates the analog photocurrent sig-
nal into an analog voltage. After filtering and noise
reduction, the analog voltage is converted into a digital
signal by AD conversion.29 The central processing unit
(CPU) or graphics processing unit (GPU) conducts
noise reduction, nonuniformity correction, graphics
distortion correction, and other processing before send-
ing the digital signal into a trained neural network for
recognition.29,30 The working process of the MVS is
illustrated in Figure 2A. The architecture is inefficient

FIGURE 1 (A) Imaging system based on CMOS-integrated graphene-quantum dot photodetectors.16 Inset: a photograph of the

packaged monolithically integrated graphene-based image sensor. (B) Side view explaining the graphene photoconductor and the underlying

readout circuit.25 (C) Schematic illustration of a 5 � 5 MoS2-based detector array and silicon chip.26 (D) Image of the top monolayer TMD

photodetector array.26 (E) Detector, memory, and logic circuits can be vertically integrated to realize the level detection chip of vdW

system.11 (A) Reproduced with permission.16 Copyright 2019, Springer Nature. (B) Reproduced with permission.25 Copyright 2017, Springer

Nature. (C,D) Reproduced with permission.26 Copyright 2016, IEEE. E, Reproduced with permission.11 Copyright 2019, Springer Nature
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in terms of power consumption and data-transfer speed,
in that the memory and processing units are physically
separated.31

A near-sensor architecture adopting near-memory
computing has been proposed that shortens the transmis-
sion distance between storage and computation and
improves energy efficiency in traditional-film-material sys-
tems.32 Near-memory computing frameworks have been
based on cutting-edge packaging technologies, such as
system-in-package (SiP), 2.5D SiP, and 3D SiP technolo-
gies.33 There has been no attempt to introduce system-on-
a-chip (SoC) technology (which integrates CPU, dynamic
random-access memory (DRAM), read-only memory
(ROM), input/output interface (IO), analog-to-digital con-
verter (ADC), and other modules on a chip) into image-
sensor design, because the CIS and CPU use different fab-
rication processes. In particular, most infrared-sensitive
materials, such as InGaAs, InSb, MCT, and VOx, are not
easily compatible with the CMOS process. One popular
method of 2.5D/3D packaging, through silicon via (TSV),
encapsulates chips with different functions on one sub-
strate, thereby significantly shortening the length of the
connection between different modules and improving the
connection density34 (Figure 2C). Sony has widely adopted

TSV packaging technology in visible CIS designs35,36

(Figure 2B). In addition, by adopting the TSV package, the
newly released infrared InGaAs product significantly
reduces pixel size and improves pixel density and trans-
mission speed, resulting in a more colorful and higher
frame-frequency imaging effect. However, this technology
is still not mature enough; it has a high price and low yield
compared with other packaging technologies. TSV packag-
ing for other infrared-sensitive materials is at the labora-
tory prototype stage, and many technical problems still
need to be solved. Taking MCT as an example, defects
introduced by the TSV process result in a high dark cur-
rent and other problems.

In essence, near-memory computing is still domi-
nated by the von Neumann architecture. In the 10 nm
process, the power consumption of data bus accounted
for more than 69% (Figure 2E). Its transmission speed is
limited by the connection density and will soon hit a bot-
tleneck. The speed of the existing high-performance pho-
todetector is less than 1 ns; the response speed of the
ROM is on the order of milliseconds. Thus, the storage
speed is much lower than the detection speed. The speed
mismatch between the modules also significantly affects
the recognition speed (Figure 2D).

FIGURE 2 (A) Working process of the MVS system. (B) Schematic diagrams of three-layer stacked photodetector. (C) Schematic of

cross-section of three-layer stacked sensor profile. (D) Schematic diagram of speed comparison between modules. (E) Schematic diagram of

energy per compute operation
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3 | NEW ARCHITECTURE FOR
MACHINE VISION SYSTEMS

3.1 | The human visual system

Nature has been a source of ideas for engineers in such
diverse fields as aerodynamics, robotics, surface, struc-
tural engineering, and materials science.37–39 The natural
HVS was developed through a long evolutionary process
and may provide inspiration for solving the problems
faced by MVS. It can recognize various objects and per-
ceive visual information in a complex environment with
high energy efficiency.21

The HVS has two main advantages over existing
MVSs. First, human eyes do not perform AD conversion
after receiving visual information, but directly preprocess
the analog signal in the retina, greatly improving the
processing speed while maintaining high-enough compu-
tational accuracy for the eye to be a major source of infor-
mation about the outside world for most humans.40 In
addition, image information is preprocessed near the ret-
ina before sending it to the brain, which increases the
possibility of recognition and energy efficiency.22

The human retina is composed of a photoreceptor
layer, bipolar cell layer, and ganglion cell layer. The light
signal is first received by photoreceptors, which are
divided into cones and rods (Figure 3A). Color determi-
nation and light collection under strong illumination are
performed by cone cells, light collection under weak illu-
mination by rod cells. The signals collected by the

photoreceptors are then transmitted to the bipolar cells
to generate bidirectional electrical signals that are modi-
fied by amacrine cells before being transmitted further.41

Amacrine cells not only modify the output from the bipo-
lar cells but also that from other associated amacrine
cells, so different combinations of them perform different
functions. Then, the modified information is sent to the
ganglion cells (and eventually to the brain).42

For initial integration or preconditioning in the ret-
ina, the electrical signal goes to the excitation-inhibition
neural network, which is composed of intermediate nerve
cells; this network realizes the center-surround antago-
nism function and improves the ability of ganglion cells
to recognize contours.40 The central peripheral antagonis-
tic receptive field of ganglion cells corresponds to the dif-
ference of Gaussians in the convolutional neural network
(CNN) algorithm (Figure 3B). It can convolve the original
input image to extract the outline of the image (Figure
3C). Next, the retina categorizes and packages
preprocessed information into the optic chiasm and fur-
ther into the visual cortex of the brain.

The human brain is composed of many neurons con-
nected through synapses; it implements learning and com-
plex cognitive tasks with high energy efficiency, playing the
role of a CPU. The BNN in the human brain consists of
neurons rich in synapses that undertake the responsibilities
of computation and storage simultaneously.43 Thus, mim-
icking the HVS to integrate sensing, storage, and processing
could solve the problem of speed mismatch and low energy
efficiency in the von Neumann architecture.44

FIGURE 3 (A) Profile of a biological retina. (B) Schematic of central peripheral antagonistic receptive field in ganglion cells.

(C) Original Lenna image. The processed image by edge enhancement
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3.2 | In-sensor preprocessing for
machine vision systems

The human retina can perform many preprocessing steps,
including integrating visual information and extracting
contour information, that greatly reduce the processing
load of the brain and improve energy efficiency.45–47 Pho-
toelectric hybrid neural networks based on photonic
memristors can mimic the sensing and preprocessing
functions of HVS (Figure 4A). Zhou et al. demonstrated a
two-terminal photonic memristor48 (Figure 4B). This
device had optically tunable characteristics, including
long-term memory, short-term memory, and a tunable
storage time affected by the written optical-pulse dose.

The nonlinear change in the resistance could function as
an HDR (high-dynamic range) preprocess in image
processing. The main features of the image were
highlighted after preprocessing, and the image contrast
was enhanced. The recognition efficiency of the algo-
rithm was improved compared with that of the neural
network without image preprocessing: after 1000 training
epochs, the recognition rate with image preprocessing
reached 0.986, while that without image preprocessing
was only 0.980 after 2000 training epochs (Figure 4C).
Photonic memristor arrays can realize image sensing and
memory functions, as well as neural morphological
vision preprocessing. The proof-of-concept device
improves the processing efficiency and image recognition

FIGURE 4 (A) Photoelectric hybrid neural networks based on photonic memristor. (B) Schematic structure of the MoOx photonic

memristor.48 (C) Preprocessing shortens the training cycle.48 (D) Sensor mimics the biological receptive field to realize the preprocessing

function. (E,F) Floating-gate structure can adjust channel responsiveness and realize storage function. (G) Schematic diagram of RF

preprocessing.40 Light panel: Sensor with preprocessing function and its circuit configuration. Right panel: The photocurrent changes

dramatically at the edges of the image. (H) A schematic diagram of the locust visual system, illustrating the neurobiological anti-collision

architecture.39 (B,C) Reproduced with permission.48 Copyright 2019, Springer Nature. (G) Reproduced with permission.40 Copyright 2020,

American Association for the Advancement of Science. (H) Reproduced with permission.39 Copyright 2020, Springer Nature
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rate, which contribute to the development of edge
computing.

MSV researchers have also attempted to imitate the
type of pattern recognition that occurs in the retina of the
human eye.40 Bipolar cells connected to photoreceptors
are classified into ON and OFF types that respond to light
stimulation oppositely. This architecture, which enables
the human eye to preprocess the image and transmit it to
the cerebral cortex for further processing (Figure 4D), is
analogous to the use of floating gates to regulate the res-
ponsivity of an artificial detector. Unlike a traditional
FET, a floating gate adds a charge-binding layer to the
dielectric layer; the charge of the floating-gate layer is
controlled by the impulse voltage on the control gate
(Figure 4E,F). Thus, the carrier concentration in the
channel is controllable: photodetectors based on floating-
gate memory could integrate detection and storage by
adjusting the channel conductance.49

Wang et al. demonstrated a bio-inspired WSe2/h-BN/
Al2O3 vertical heterostructure that mimics the vertical
integration of the photoreceptor and bipolar cell layers in
the retina.40 This device could be regulated by the back-
gate voltage to achieve a positive or negative
photoresponse imitating that of the bipolar cell layer
(Figure 4G). An OFF-device surrounded by 12 ON-devices
could mimic the biological receptive field in the HVS that
detects the edges of objects. In the experiment, the light-
source array transmitting the image was turned on column
by column, imitating a moving edge. As the edge moved
from the left side to the right, the current increased
because of the activation of more ON-devices. It reached a
maximum value before the edge reached the central OFF-
device, which was later activated to produce a reverse pho-
tocurrent. The entire photocurrent output of the system
decreased, resulting in an opposite photocurrent peak. The
sharp change in photocurrent realized the recognition of
the image boundary. Another task was image recognition
without AD conversion. The central peripheral antagonis-
tic receptive field formed by the array performed a convo-
lution operation on the original input image to extract the
contour. The CNN formed by the prototype device was
used to classify the target image.

Jayachandran et al. created an extremely low-power,
dynamic, nonvolatile collision-avoidance monitoring sys-
tem by vertically stacking a single-layer MoS2 light detec-
tor with a floating-gate transistor-based memory device
to simulate the LGMD neurons in locusts39 (Figure 4H).
These are unique and complex neurons that use a distrib-
uted computing architecture to assist in processing visual
information. The honeycomb-shaped photoreceptors in
the insect's compound eye convert visual stimuli into
electrical impulses that pass through the lamina,
medulla, and lobules, before eventually being transmitted
to the dendritic fan-out area of LGMD neurons. The

dendritic branches in the red area receive feedforward
suppression; those in the blue area receive feedforward
excitation and lateral suppression. The system developed
by Jayachandran et al. used positive feedback from the
light detector to the light signal and negative feedback
from the floating gate to simulate this natural computa-
tional architecture. The photodetector responded to the
impending object (stimulus signal) and caused the device
current to increase, while the underlying programmable
memory stack always caused the current (inhibition sig-
nal) to decrease. When an object approached, an excit-
atory signal was added to the inhibitory stimulus; this
caused a non-monotonic change in the device current,
simulating the escape response of LGMD neurons in the
locust. Thus, the system could detect an impending colli-
sion in time and trigger an escape response with nano-
joule energy consumption. This in-memory task-specific
computation and perception method preprocessed the
raw data, greatly simplifying the computation and reduc-
ing the energy consumption.

3.3 | In-sensor computing for machine
vision systems

Because of their vdW bonding, 2D materials allow arbi-
trary stacking to form 3D high-density integration with
an electronic memristor array. Connecting 2D photode-
tectors with a memristor array is an effective way to
improve energy efficiency. A memristor is a type of non-
volatile memory, the resistance value of which can be
changed nonlinearly by an external stimulus48,50,51 (Fig-
ure 5A). The adjustable resistance can be used as the
weight of the neural network. It can simultaneously pro-
cess and store information that would require a dozen
CMOS transistors in matrix computing.

Wang et al. proposed a neuromorphic visual system
composed of sensors and memory networks mimicking
the hierarchical organization and biological functions of
the retina.4 Figure 5B shows a flowchart and processing
of the neuromorphic visual system. The sensor was con-
structed using a WSe2/h-BN/Al2O3 vdW heterostructure
detector with the ability to adjust electrically between
ON and OFF states. Some common kernel functions in a
CNN algorithm were realized by adjusting different
detectors into the ON/OFF state in a 3 � 3 bionic retinal
sensor (Table 1 summarizes commonly used convolution
kernels and their corresponding ON/OFF states). A vari-
ety of image-processing operations, such as useless-
information filtering and key-information extraction,
were realized using different convolution kernels. How-
ever, the kernel function represented by the sensor was
not adjustable during its operation, unlike the dynamic
kernel function in a normal CNN algorithm. Moreover,
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the extracted optoelectronic signal still required transfor-
mation into a digital signal before being output into the
memristor crossbar network. Although the packaging
was not specified in the paper, it seems more likely to
have been PCB than SiP. In contrast to von Neumann
structure-based processors, the memristor can process
analog information directly without AD conversion. The
neuromorphic system accomplished excellent cross-
tracking by networking the retinomorphic sensor with a
recurrent neural network in a fully analog signal
environment.

Commercial silicon-based photodetectors show a
fixed responsivity that is determined by the structure and
doping concentration inside the device. The physical
properties of 2D materials are easily regulated by external

stimuli because of their atomic layer thickness.52 The
applied voltage controls the carrier concentration and
polarity of the 2D materials (Figure 5C). Because of the
unique layered structure of 2D materials, the carrier den-
sity can be precisely tuned by shifting the gate voltage.
Even the carrier type can be changed, resulting in a
change in the response range or responsivity. A homoge-
neous WSe2 P–N junction has been realized by regulating
the local carrier density in different WSe2 areas using a
double gate.24 Responsive-regulated regulated P–N diodes
based on this homogeneous junction were obtained. The
responsivity of the photodiodes could reach 210 mA W�1,
and the corresponding energy efficiency conversion was
0.2%. The adjustable responsivity could mimic the variable
weights of a neural network. This means that the new

FIGURE 5 (A) Connecting 2D photodetectors with the memristor array is an effective way to improve energy efficiency. (B) Flowchart

briefly illustrates the sensing and processing of images by a detector combined with a memristor array.4 (C) 2DM photodetector with

adjustable response rate is realized by adjusting 2DM band with double back gates. (D–F) Mennel et al. reported a system that combines a

sensor chip with a neural network: (D) Sensor can not only collect signals but also act as a neural network to recognize simple features.

(E) Schematic diagram of unit WSe2 photodiode. The device works under short circuit condition and the photoresponse is set by the bottom

gate electrode. (F) System can be trained in Classifier and Autoencoder two modes.9 (B) Reproduced with permission.4 Copyright © 2020,

Oxford University Press. (E,F) Reproduced with permission.9 Copyright 2020, Springer Nature Publishing AG
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photoelectric detector can integrate the processing func-
tion into the sensing module, thereby improving visual
processing speed and reducing power consumption.

If some physical parameters of the photodetector,
such as the resistance of an electrical memristor, can be
dynamically regulated by an external voltage, a neural
network can be formed directly by the photodetector
array. Mennel et al. designed photodiode arrays based on
2D materials, providing a new architecture to replace the
traditional von Neumann architecture for image recogni-
tion. This enabled the implementation of more in situ
calculations on the detector9 (Figure 5D). As a photodi-
ode array, the device itself constituted a neural network
that could recognize and process images simultaneously,
breaking through the limitations of traditional separation
modules. This significantly improved the speed and effi-
ciency of intelligent recognition. Double-gate electrodes
were used to dope channel materials electrically,
resulting in an adjustable responsivity for each pixel
device (Figure 5E). Through the artificial neural network,
the system executed supervised and unsupervised learn-
ing tasks (Figure 5F). The responsivity of each unit
served as the weight of the neural network. The res-
ponsivity was constantly adjusted to maximize the sys-
tem's identification accuracy. Because both image
sensing and image processing were carried out in an ana-
log signal environment, the speed of the system was lim-
ited only by the optical–electrical conversion process.
Therefore, image detection and recognition occurred

within 50 ns. Theoretically, the system could process 20
million images per second, a rate several orders of magni-
tude faster than that of traditional methods. In addition,
compared with current MVSs, which consume a large
amount of power per operation, the biological neural net-
work had very low energy consumption per operation:
10�15 to 10�13 J.

4 | CHALLENGES OF TWO-
DIMENSIONAL MATERIAL ARRAY
DETECTORS

Photodetectors using 2D materials may enable the devel-
opment of novel photoelectric sensors for energy-efficient
computing and in situ recognition and of curved image
sensors with remarkable volume advantages, as will be
discussed below. However, commercial viability has not
yet been attained. Some technical issues still need to be
addressed, including the stable growth and doping of
large-scale crystals, standardization of evaluation
methods, and development of large-scale heterogeneous
integration techniques. In this section, we discuss the
obstacles to material growth and device performance, as
well as possible ways to overcome them.

4.1 | Large-area two-dimensional
materials and photodetector arrays

Large-area materials are indispensable for large-scale
integrated optoelectronic devices. Although small sam-
ples of 2D materials can be easily obtained by mechanical
exfoliation, the growth of large-area high-quality 2D
materials remains a major challenge. Because the thick-
ness of the single layer of 2D material, unlike that of a
conventional thin film, is of nearly atomic scale, growth
depends on the substrate surface. Multilayer 2D mate-
rials, while lacking some of the advantages of single
layers, have good absorption of light and are widely used
in the field of photodetectors, but the van der Waals force
between the layers is weak, and the growth process is dif-
ficult to control.53 The growth method with a controllable
number of layers is also a challenge currently faced.

Many factors may influence the growth of high-
quality large-area 2D materials, such as elemental ratio,
surface defects, nucleation processes, growth catalytic
techniques, and phase control, require further investiga-
tion. Because of the immature state of growth technology,
defects are produced in the material: vacancies, substitu-
tions, anti-sites, and adsorbed atoms.54 These have a sig-
nificant influence on the electrical and optoelectronic
properties of 2D materials: they can act as carrier donors,

TABLE 1 Commonly used convolution kernels and the

corresponding on/off states

Convolution
kernels ON/OFF states Function

Inverse Image
stylization

Difference-of-
Gaussian

Edge
enhancement

Laplacian Contrast
correction

Note: ~ON ~OFF ~Zero
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scatterers, traps, and recombination centers under differ-
ent conditions.55 In the preparation process, it is neces-
sary to avoid most defects, but sometimes beneficial
defects can be used to achieve special functions. There-
fore, a systematic understanding of 2D material growth is
necessary for the future development of detector arrays.
The construction of high-quality heterogeneous struc-
tures incorporating large-area materials is another chal-
lenge to be faced in the future.

Because of the stringent requirements for substrate
quality in the growth process of 2D materials,53 it is nec-
essary to eliminate potential excess nucleation points
before growth. In the early stage of growth, graphene
has been grown on the surface of Cu foil, and the
active parts of the foil surface have been passivated
through high-temperature, long-time annealing56 or elec-
trochemical polishing57 to achieve millimeter-sized
growth. Oxidization of growing substrates to eliminate
potential nucleation points has been widely used and
intensively studied, pushing the size of graphene
domains up to the centimeter scale.58–61 By using Ni
catalysis and CH4 gas to induce epitaxial growth, it is
even possible to prepare meter-scale single-crystal
graphene.62 However, graphene is a semiconductor with
a zero bandgap. Graphene's poor absorption limits its
applicability in photodetection. Therefore, graphene is
generally used in heterostructures. Goossens et al. used

large-area graphene and PbS quantum dots to form het-
erostructures and realized a 388 � 288 near-infrared
camera25 (Figure 6A). Quantum dots acted as the photo-
sensitive layer, while graphene, because of its high mobil-
ity, became a carrier fast-transport channel.25 When
photoexcited, free electron–hole pairs were generated in
the quantum dots; the holes migrated to the graphene,
whereas the photogenerated electrons stayed in the
quantum-dot layer, where they could potentially regulate
the graphene channels.63 As a conductive channel with
high mobility, graphene is easily affected by an external
electric field; as a photosensitive absorption layer, PbS
quantum dots compensate for the weakness of weak light
absorption and realize near-infrared detection by improv-
ing the gain of the photogating effect (Figure 6B).

Because of their excellent electronic and optical prop-
erties, transition-metal dichalcogenides (TMDs) are
promising materials for next-generation electronic and
optoelectronic devices. The large-area growth of TMDs
can be achieved through chemical vapor deposition
(CVD), depositing metal precursors before sulfurization
or selenization. This can produce centimeter scale, atomi-
cally thin, and uniform MoS2,

67,68 NbSe2,
69 and PdSe2

70

crystals. In addition, pulsed laser deposition (PLD),71

atomic layer deposition (ALD),72 and metal–organic
chemical vapor deposition (MOCVD)73 have been used to
grow large-area materials. For example, in the case of

FIGURE 6 Two-dimensional material detector array. (A) Back-end-of-line CMOS integration of CVD graphene with 388 � 288 pixel

image sensor readout circuit.25 (B) Energy level diagram of the graphene/quantum dot interface. (C) Optical microscopy images of the

32 � 32 MoS2 photo-FET crossbar array. (D) The persistent photoconductivity effect of 32 � 32 MoS2 photo-FET. (E) 42 � 42 SeTe2
photodetector array. (F) Imaging based on SeTe2 focal plane detector array. (G) Schematic illustration of the device design. Inset shows a

schematic illustration of the device structure. (H) Infrared imaging of the curved image sensor array. (A) Reproduced with permission.25

Copyright 2017, Springer Nature Publishing AG. (B) Reproduced with permission.63 Copyright 2012, Springer Nature Publishing AG. (C,D)

Reproduced with permission.64 Copyright 2020, John Wiley & Sons, Inc. (E,F) Reproduced with permission.65 Copyright 2020, John Wiley &

Sons, Inc. (G,H) Reproduced with permission.66 Copyright 2017, Springer Nature Publishing AG
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MoS2, anti-parallel domains (0� and 60� orientations)
appear during synthesis because of the special triple sym-
metry of the lattice, resulting in double grain boundaries
during the splicing process.74 Therefore, the main practi-
cal obstacle is the accurate control of the unidirectional
arrangement of MoS2 domains on the wafer.

The successful growth of large-area photosensitive
materials has greatly promoted the development of detec-
tor arrays based on 2D materials. Yang prepared a 5 � 5
MoS2 photodetector array with a responsivity of 25 A
W�1 at 637 nm.26 Jang prepared a 32 � 32 MoS2 photode-
tector array64 (Figure 6C) and realized the internal neural
network calculation by using the continuous
photoconductance of MoS2 (Figure 6D); this system suc-
cessfully recognized handwritten digits. Tan et al. fabri-
cated a 42 � 42 SexTe1�x array as a 2D-material camera
for infrared imaging65 (Figure 6E,F).

Large-area 2D materials are also prone to forming
heterojunctions because of vdW forces. Zeng et al. used
controlled growth of PdSe2 combined with Si to realize a
4 � 4 photodetector array, achieving highly sensitive
detection performance at 780 nm.70 An 8 � 8 detector
array has been realized by growing large-area PtSe2 com-
bined with Si; a detectivity of 1.26 � 1013 Jones was
achieved in the near-infrared band at 810 nm.75

2D materials are excellent candidates for curved
image sensors, because their layered properties permit
them to bend. 2D material detectors on flexible substrates
can cover a broad spectral range from UV to IR.76 A
hemispherical structure can be assembled by bending a
flexible substrate.66 Therefore, many research studies
have been conducted on 2D flexible detectors.76 Choi
et al. applied a MoS2/graphene heterojunction photode-
tector66 to an artificial retina in an aberration-free single-
lens imaging system, as shown in Figure 6G. A flexible
photodetector based on a graphene/MoS2 vdW hetero-
junction achieved a photo-responsivity of 45.5 A W�1.77

The photodetector array and ultrathin neural-interfacing
electrodes were integrated on a flexible printed circuit
board to form a soft-implant optoelectronic device, as
shown in Figure 6H. Live experiments on rats verified
the effect of the device on the retina. The flexible device
successfully responded to external light pulses and
detected both spikes in the rat visual cortex and local
field potential changes on the spikes. This was the first
time that a bionic eye based on 2D materials was real-
ized. Table 2 summarizes the scale and performance of
various photodetector arrays based on 2D materials.

Moreover, black phosphorus80 (bP), a narrow-
bandgap semiconductor material, is widely used in room-
temperature mid-infrared detection because of its high
mobility and 0.3 eV bandgap.10 Although CVD can be
used to synthesize bP from bottom to top, only a few

layers of bP thin films with a transverse size of tens of
microns can be obtained.81,82 Wu et al. reported a con-
trolled PLD method that can directly synthesize at the
centimeter scale a few layers with high crystallinity and
high homogeneity.83 Molecular dynamics (MD) simula-
tion results show that the pulsed laser, unlike conven-
tional thermal-assisted evaporation, promotes the
uniform distribution of bP clusters in the physical vapor,
thus reducing the formation energy of the bP phase and
realizing the large-scale growth of bP thin films with
fewer layers. A cm-level field-effect transistor (FET) array
based on a few-layer bP film was fabricated. It exhibited
good electrical characteristics in terms of carrier mobility
and current switch ratio: the carrier mobility reached
213 cm2 V�1 s�1 at 295 K and 617 cm2 V�1 s�1 at 250 K,
performance comparable to that previously reported for
mechanically stripped bP. However, a bP photodetector
array has not yet been reported. The optoelectronic prop-
erties of large-scale bP films cannot be compared with
those of bP films obtained from mechanical exfoliation.

4.2 | Accurate characterization of
quality factor of 2D-material photodetector

Photodetectors are classified as photoconductive or
photovoltaic, depending on their structure. The photo-
conductive type is easy to manufacture and requires a
current drive, but its dark current is higher; the photo-
voltaic type can work under zero bias conditions and
has low noise, but its manufacturing process is more
complicated. The performance quality factors of the
two types of photodetectors are also different. There-
fore, it is important to standardize the evaluation
methods. Although the photoelectric properties of 2D
materials are almost always reported to be excellent,
these test data are frequently obtained through non-
standard measurement methods, often using non-
irradiation light sources such as lasers. The active area
of the device is often also not clearly defined. Nonstan-
dard measurement methods have seriously hindered
the development of photodetectors, making it impossi-
ble to compare measured performances with those of
commercial devices. Therefore, an accurate characteri-
zation method for the quality factor of a 2D photode-
tector is included in this paper.

2D material photodetectors often perform poorly in
low-light detection. Most devices fail to detect photo sig-
nals in standard measurements using blackbody light
sources. The responsivity and detectivity of some devices
will drop by two or three orders of magnitude in standard
measurements. Taking the specific detectivity of an
important index of the infrared detector as an example,
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TABLE 2 Comparison of reported

infrared photodetectors array based on

2D materials

Materials Scale Wavelength (nm) R (A/W) D* (Jones) Refs.

MoS2 4 � 4 405 0.5 — 77

MoS2 5 � 5 637 24 — 26

MoS2 32 � 32 532 150 1010 64

SnSe ≈1000 980 <1 109 78

MoS2/graphene 1500 515 <1 — 66

SexTe1-x 42 � 42 1550 1.5 1010 65

PdSe2/Si 4 � 4 780 <1 1013 70

PtSe2/Si 8 � 8 810 — 1013 74

PdS/graphene 388 � 288 NIR — 1012 25

FIGURE 7 Accurate characterization of quality factor of two-dimensional material photodetector. (A) Schematic diagram of

photoresponse of laser test. (B) Schematic diagram of photoresponse of blackbody test. (C) Schematic diagram of the spectral distribution of

a monochromatic laser. (D) Schematic diagram of 800 K blackbody spectral distribution. (E) Photodetector spectral response calculated

using g-factor. (F) The detectivity limit of the photodetector limited by background radiation at 300 K (BLIP) when the field of view is 2π
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the specific detectivity of the commercial thermistor is
108 Jones. Meaningful research work should be higher
than the detectivity of the thermal detector. Therefore,
the calculation of noise should also be standardized. The
dark current should be carefully used to calculate the
noise equivalent power (NEP).

One of the important indicators of the photodetector
is the responsivity (R),84 which is the ratio of the output
photocurrent Iph to the input optical power P:

R¼ Iph
P
: ð1Þ

At present, this quantity is usually measured by either
the monochrome laser test or the mixed-light blackbody
test.85 Although the monochromatic property of the laser
test is good (Figure 7C), the spot has a Gaussian distribu-
tion in the infrared stage and its size cannot be accurately
measured, resulting in a calculation error of several
orders of magnitude (Figure 7A). We believe that the uni-
form blackbody test should be the main test in the infra-
red band (Figure 7B). The device is located at a distance
L from the aperture that can vary with the slide. The total
incident power on the device surface can be calculated
using the formula

P¼ αεσ T4�T4
0

� �
A

πL4
An ð2Þ

where α is the modulation factor, ε is the average emis-
sivity of the blackbody radiation source (ε = 0.9 for our
source), and σ is the Stefan–Boltzmann constant. T is
the temperature of the blackbody radiation source, and
T0 is the room temperature (300 K). A is the area of the
blackbody radiation source, and An is the device area.
The photodetector absorbs the incident photons to gen-
erate a voltage signal, which is converted by the cur-
rent preamplifier to obtain the final current signal I.
The current response rate R of the device is I/P. To
obtain more accurate current signals, a chopper is
introduced into the test optical-path diagram to modu-
late the radiation spectrum, and a phase-locked ampli-
fier reads the signal to filter system noise and
background noise. From this, we can obtain the black-
body responsivity.

To obtain the relationship between the responsivity of
the detector and the radiation wavelength, a spectral
response test is required. In this study, grating and Fou-
rier transform infrared (FTIR) spectroscopy were com-
bined for testing. In general, the blackbody response test
obtains the blackbody responsivity Rb and blackbody
detectivity D* (blackbody), and the FTIR test obtains the
relative responsivity R0 (λ). The ratio of the blackbody

responsivity and the peak responsivity of an infrared
detector is constant, which is the g factor. Thus, by calcu-
lating the factor g, we can obtain the peak responsivity
R (λp) and peak detectivity D* (λp).

86 To calculate g, we
first note that by definition

R0 λð Þ¼ R λð Þ
R λp
� � : ð3Þ

Because blackbody radiation has a continuous spec-
trum and the emissivity of each wavelength is different
(Figure 7D), the signal produced by the photodetector is
the sum of the signals produced by each wavelength of
radiation:

Rb ¼
R∞
0 ϕ λð ÞR λð Þdλ
R∞
0 ϕ λð Þdλ ¼R λp

� �
R∞
0 ϕ λð ÞR λð Þ=R λp

� �
dλ

R∞
0 ϕ λð Þdλ

¼R λp
� �

R∞
0 ϕ λð ÞR0 λð Þdλ
R∞
0 ϕ λð Þdλ , ð4Þ

where ϕ (λ) is the blackbody radiation power distribution.
Then the g factor is

g¼ Rb

R λp
� �

R∞
0 R

0 λð Þϕ λð Þdλ
R∞
0 ϕ λð Þdλ ð5Þ

The response spectrum obtained by the Fourier
spectrometer is only a relative response spectrum, and
the response rate of the current spectrum of the pho-
todetector can be obtained after blackbody-response
calibration. The relationship between the peak cur-
rent photoresponse R(λp) and the blackbody
photoresponse Rb of the photodetector is as follows
(Figure 7E):

R λp
� �¼Rb

g
: ð6Þ

The normalized detectivity (D*) is defined as the
detector output signal-to-noise ratio (SNR) generated by
unit incident power when normalized to a unit photosen-
sitive surface and unit noise equivalent power (NEP); its
unit is the Jones (i.e., cm Hz1/2 W�1).87 The best perfor-
mance can be obtained when the detector and amplifier
noise is low. Under these conditions, the main noise
source of the detector is the discrete radiation field in the
detection process, and the main noise is photon noise.
This limiting value of detector performance is called the
background limit. From the particle noise formula, the
BLIP (background limited infrared photodetector) D* of
the photovoltaic and photoconductive types at 300 K can
be deduced,87 as shown in Figure 7F. In principle, the

WU ET AL. 13



BLIP is the performance limit of the detectors (Fig-
ure 7F).

We also calculated the D* of some low-dimensional
material detectors for comparison. D* is usually expressed
as follows:

D*¼
ffiffiffiffiffiffiffiffiffi
AΔf

p

NEP
¼R

AΔfð Þ1=2
in

: ð7Þ

Here, in is the noise current, which is different for
photoconductive and photovoltaic detectors, Δf is the
integration time (1 s). The gain of photosensitive diodes
based on 2D materials is usually higher than 1. In the
dark state of the photoconductive detector, the two main
noises are thermal noise (it) and composite noise (igr).
Both of these noises are related to the internal gain, so it
is not accurate to calculate D* using the dark current Id
for an optical detector with gain; it should be divided by
the gain. Failure to divide by the gain is why reported
values of low-dimensional-material photoconductive-
detector performance are in general artificially high. Of
course, the response time of high-gain photodetectors
will be affected by gain to different degrees, depending
on the source of the gain. For example, the gain of a
high-gain avalanche photodetector comes from ava-
lanche breakdown, so it has little effect on the response
time. By contrast, gain caused by an internal trap state
has a considerable impact on the response time.

The field of photodetectors based on 2D materials is
booming and has vast potential.84 However, accurate test
methods are urgently needed to compare the

performance indicators of various devices. The common
practice of using dark current and laser tests to define
device detection rates is inadequate, because it ignores
key parameters, such as spot size, Gaussian distribution
of optical power, and the gain relationship between dark
current and noise in the gain device. These omissions
may overestimate D* by orders of magnitude. Therefore,
we suggest that the SNR and NEP of the device can be
directly characterized by the combined measurement of
the noise spectral density and irradiated photocurrent at
a fixed modulation frequency (and 1 Hz bandwidth).
Such a strict calculation process is essential for verifying
high D* values and promoting the application of 2D
photodetectors.

5 | CONCLUSION

2D material photodetectors provide solutions for next-
generation machine vision problems. However, 2D mate-
rials are not yet feasible for practical use in intelligent
photoelectric sensors. Technical issues that still need to
be addressed include techniques for the stable growth of
large-scale crystals, standardization of evaluation
methods, and large-scale heterogeneous integration tech-
niques. Existing intelligent sensing based on 2D materials
has a relatively low scale, and system completeness is the
main issue for intelligent sensing. A roadmap for next-
generation MVSs based on 2D materials is shown in Fig-
ure 8. Theoretically, the three-dimensional integration of
low-dimensional and other materials is possible; this
would significantly improve system area efficiency, but

FIGURE 8 Roadmap for MVS based on 2D material photodetectors
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achieving high-density heterogeneous integration will
require advances in selective 2D-material etching. In addi-
tion, the connection density of the alignment circuit
should be considered. In terms of algorithms, existing
MVSs based on 2D materials mainly focus on the improve-
ment of recognition accuracy. However, accuracy is diffi-
cult to compare between systems with different structures,
and a new quality factor needs to be introduced to evaluate
next-generation MVSs based on 2D materials. In terms of
hardware, the trend has been toward reduction rather
than elimination of the AD module and auxiliary modules.
For example, in Mennel's research,9 external memory is
required to store the weight value, and a computer is
required to calculate the loss and classification functions.
In the future, cutting-edge machine learning algorithms
and neural network structures will be integrated into
image sensors. Therefore, the development of new MVS
architecture requires cross-domain exchanges between
researchers and the collaboration of multiple disciplines,
including materials science, semiconductor physics, com-
puter science, and data science.
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